понеделник, септември 20, 2004
Quantum Internet Search
Some words from Seth Lloyd, Professor of Quantum-Mechanical Engineering, MIT:
"JB immediately tossed me in a corner of the restaurant with Sergey Brin and Larry Page, who grilled me on the potential applications of quantum computation. They were shockingly knowledgeable on the subject and quickly pushed me like a novice sumo wrestler to edge of the ring that marks the boundary between the known and the unknown. That boundary is always closer than one thinks.
We agreed that quantum internet searches are a few years off. I had spent the afternoon in Jeff Kimble's lab at Caltech contemplating the first node of the the quantum internet — a single atom trapped in an optical cavity, capable of exchanging entangled photons with any other nodes, as soon as they are brought into existence. But when the quantum internet has only one node, containing one bit, Q-Google (Quoogle?) is not yet necessary. Sergey and Larry and I noted that when it is up and running, the quantum internet should offer all sorts of wacky possibilities for quantum internet search. Searches could be made significantly more efficient, for example, by using quantum parallelism to explore every node of the quantum internet simultaneously. Problems arise, however, from the fact that quantum bits can't be cloned. I cannot go further into our discussion as that would involve proprietary information concerning quantum internet protocols (e.g., Q-TCPIP).
Sergey broached the subject of massive entanglement and decoherence, a hot topic in quantum information these days (Entanglement is a peculiarly quantum-mechanical effect in which a bunch of quantum systems such as atoms share more information with each other than is possible classically. Entanglement is the branch of quantum weirdness that allows quantum computers to function. Decoherence is a process that destroys entanglement. As I said, these guys were really on top of their quanta).
We discussed recent experiments that Dave Cory and I had done at MIT, and Sergey made a rather fine suggestion for an experiment to test whether gagillions of entangled nuclear spins decohere faster than gagillions of unentangled nuclear spins. Dave and I will check it out.
At this point Jeffrey Epstein joined the conversation and demanded to know whether weird quantum effects had played a significant role in the origins of life. That question pushed me way out of the sumo ring into the deep unknown. We tried to construct a version of the question that could be answered. I was pushing my own personal theory of everything (the universe is a giant quantum computer, and to understand how things like life came into existence, we have to understand how atoms, molecules, and photons process information). Jeffrey was pushing back with his own theory (we need to understand what problem was being solved at the moment life came into being). By pushing from both sides, we managed to assemble a metaphor in which molecules divert the flow of free energy to their own recreational purposes (i.e., literally recreating themselves) somewhat in the way Jeffrey manages to divert the flow of money as it moves from time-zone to time-zone, using that money for his own recreational purposes (i.e., to create more money). I'm not saying it was the right way to describe the origins of life: I'm just saying that it was fun."
Link
Source: Edge
See also:
The Quantum Nightmare
Big Thinkers - KurzweilAI.net
Information and Entropy - MIT OpenCourseWare
"JB immediately tossed me in a corner of the restaurant with Sergey Brin and Larry Page, who grilled me on the potential applications of quantum computation. They were shockingly knowledgeable on the subject and quickly pushed me like a novice sumo wrestler to edge of the ring that marks the boundary between the known and the unknown. That boundary is always closer than one thinks.
We agreed that quantum internet searches are a few years off. I had spent the afternoon in Jeff Kimble's lab at Caltech contemplating the first node of the the quantum internet — a single atom trapped in an optical cavity, capable of exchanging entangled photons with any other nodes, as soon as they are brought into existence. But when the quantum internet has only one node, containing one bit, Q-Google (Quoogle?) is not yet necessary. Sergey and Larry and I noted that when it is up and running, the quantum internet should offer all sorts of wacky possibilities for quantum internet search. Searches could be made significantly more efficient, for example, by using quantum parallelism to explore every node of the quantum internet simultaneously. Problems arise, however, from the fact that quantum bits can't be cloned. I cannot go further into our discussion as that would involve proprietary information concerning quantum internet protocols (e.g., Q-TCPIP).
Sergey broached the subject of massive entanglement and decoherence, a hot topic in quantum information these days (Entanglement is a peculiarly quantum-mechanical effect in which a bunch of quantum systems such as atoms share more information with each other than is possible classically. Entanglement is the branch of quantum weirdness that allows quantum computers to function. Decoherence is a process that destroys entanglement. As I said, these guys were really on top of their quanta).
We discussed recent experiments that Dave Cory and I had done at MIT, and Sergey made a rather fine suggestion for an experiment to test whether gagillions of entangled nuclear spins decohere faster than gagillions of unentangled nuclear spins. Dave and I will check it out.
At this point Jeffrey Epstein joined the conversation and demanded to know whether weird quantum effects had played a significant role in the origins of life. That question pushed me way out of the sumo ring into the deep unknown. We tried to construct a version of the question that could be answered. I was pushing my own personal theory of everything (the universe is a giant quantum computer, and to understand how things like life came into existence, we have to understand how atoms, molecules, and photons process information). Jeffrey was pushing back with his own theory (we need to understand what problem was being solved at the moment life came into being). By pushing from both sides, we managed to assemble a metaphor in which molecules divert the flow of free energy to their own recreational purposes (i.e., literally recreating themselves) somewhat in the way Jeffrey manages to divert the flow of money as it moves from time-zone to time-zone, using that money for his own recreational purposes (i.e., to create more money). I'm not saying it was the right way to describe the origins of life: I'm just saying that it was fun."
Link
Source: Edge
See also:
The Quantum Nightmare
Big Thinkers - KurzweilAI.net
Information and Entropy - MIT OpenCourseWare
Comments:
Публикуване на коментар